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Abstract. We consider the heat kernel (and the zeta function) associated with Laplace-type
operators acting on a general irreducible rank-1 locally symmetric space The set of
Minakshisundaram—Pleijel coefficier{ta, (X)}2, in the short-time asymptotic expansion of the
kernel is calculated explicitly.

1. Introduction

In the theory of quantum fields on curved background spaces, the short-time expansion of
the heat kernel plays an extremely important role. In particular situations, for example, the
coefficients in the expansion control the one-loop divergences of the effective action, and
related quantities such as the stress energy momentum tensor. Some of these coefficients have
been determined and appear in the physics and mathematical literature. Note [1-6] for closed
Riemannian manifolds and [7, 8] for manifolds with a smooth boundary. The literature on
these matters is vast.

In [1-3], R Miatello studies the case of a closed locally symmetric rank-1 mankold
using the representation theory of the group of isometries.dlVe consider the same case in
the present paper, but we use the spectral zeta functidn &y our approach we determine
the expansion coefficients immediately and explicitly (essentially in one step), given the results
of [9]. Recently the topological Casimir energy [10], the one-loop effective action, and the
multiplicative and conformal anomaly [11, 12] associated with Laplace-type operatdfs on
and their product, have also been analysed by use of the spectral zeta function.

The paper is organized as follows. In section 2 we define the spectral zeta fupctipp)
of X corresponding to a finite-dimensional representagiai the fundamental group of X.
The residues of(s; x) and special values of this zeta function, which relate to the expansion
coefficients, are provided by theorems 2.1 and 2.2. In section 3 we consider the asymptotic
expansion of the heat kernel (as> 0%), and compute all the expansion coefficients in closed
form in the main theorem, theorem 3.1. Section 5 contains some remarks in summary. We
include an appendix with information supplementary to theorems 2.1, 2.2 and 3.1.

§ On leave from Sankt-Petersburg State Technical University.
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2. The spectral zeta function

We shall be working with an irreducible rank-1 symmetric sps€e- G/K of non-compact
type. ThusG will be a connected non-compact simple split rank-1 Lie group with a finite
centre andk C G will be a maximal compact subgroup [13]. LEt C G be a discrete,
co-compact torsion free subgroup. Th€n= X = I'\M is a compact Riemannian manifold
with fundamental group’; namelyX is a compact locally symmetric space. Given a finite-
dimensional unitary representatignof I" there is the corresponding vector bunifler— X
over X given by V, = T'\(M ® F,), where F, (the fibre of V,) is the representation
space ofy and wherel" acts onM ® F, by the ruley - (m, f) = (y - m, x(y)f) for
(y.,m, f) e T ® M ® Fy). Let Ar be the Laplace—Beltrami operator &f acting on
smooth sections o¥,; we obtainAr by projecting the Laplace—Beltrami operator af
(which is G-invariant and thud -invariant) to X. As X is compact we can consider the
spectrum{x; = A;(x), n; = n;(x)}32, of —Ar, wheren; is the (finite) multiplicity of the
eigenvalue: ;. We use the minus precedimg- to have thel; > 0:0=21¢ < A1 < A2...;
”m]‘_)oo }‘j = OQ.

The spectral zeta functian (s; x) of X of Minakshisundaram—Pleijel type [14], which
we shall consider is defined by

o 1 (x)
aris; x) = ! (2.1)
r(s X ; )"](X)S

for Res > 0. ¢r(s; x) is a holomorphic function on the domain Re- d/2, whered is the
dimension ofM, and by general principles-(s; x) admits a meromorphic continuation to
the full complex planéC. However, since the manifold - is quite special it is desirable to
have the meromorphic continuation®f(s; x) in an explicit form, for example in terms of the
structure ofG andI'. Using the Selberg trace formula and Kiespherical harmonic analysis

of G, we have obtained such a form in [9]; also see [10, 15]. In particular we can obtain the
residues ofr(s; x), and compute the special valugg—n; x),n =0, 1, 2. . .—results which

play a decisive role in the present work. To state these results we introduce further notation.

Up to local isomorphism we can represéfit= G /K by the following quotients:

§01(n,1)/S0O(n) (1)

_ SUn,1)/U(n) [08))
M= SP(n,1)/(SP(n)® SP(1)) II) (2.2)

F—20)/Spin(9) v)

whered = n, 2n, 4n, 16, respectively. We shall need the real numiiewhich corresponds
to % the sum of the positive real restricted roots(dfvith respect to a nilpotent factor in an
Iwasawa decomposition @. pg is given bypy = (n — 1)/2, n, 2n + 1, 11 respectively in
the caseg/)—(1V). For details on these matters the reader may consult [13], and also the
Appendix in [10].

The spherical harmonic analysis @ is controlled by Harish—Chandra’s Plancherel
density|C ()| 2, a function on the real numbelRs computed by Miatello [1-3], and others,
in the rank-1 case we are considering. We choose a normalization of the Haar meaSure on
however, which differs from that of [1-3]; see [9]. For a suitable constagntiepending only
onG, and for a suitable even polynomiBlr) of degreai — 2 for G # S 01(n, 1) with n odd,
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and of degred — 1 = 2m for G = S0.(2m + 1, 1), |C(r)|~2 is given by
CgrrP(r)tanhzr) for G=S50:2m,1)
Cgnr P(r) tanh(zr/2) for G=SU(n,1) n odd

IC(r)| 2 = or G=SP(n1) Fa20 | . (2.3)
Cgnr P(r) coth(zrr/2) for G=SU(n,1) n even
Cgm P(r) for G=S50:2m+11)

The value ofCs and the explicit form ofP (r) are given in the appendix. For real hyperbolic
spaceM = S0,(2m, 1)/S0O(2m) of even dimension/, for example,P(r) is given by

m—2 . 2
P =T] [;»2 + @] . (2.4)
j=0

The coefficients of (») will be denoted by,;:
dj2—1 ‘
P(r)y= Y agr¥ for G #SO.(2m+1,1)
j=0

= ayr? for G=S0.2m+1,1). (2.5)
=0

We denote by VAIl'\ G) the G-invariant volume of"\ G induced by the Haar measure 6n

As pointed out earlier, the explicit meromorphic structure of the zeta fungtion x) of
(2.1) is worked out in [9] in terms of the spherical harmonic analysi€ @ndI"-structure;
see theorems 4.2, 5.1 there; also compare theorems 5.2, equation (6.1), and theorem 6.9
of [10]. In particular, apart from the cage = SO1(n, 1) with n odd (a case which we treat
separately){r(s; x) is holomorphic except for possibly simple polessat 1,2, ...,d/2.
By theorem 5.1 of [9], or by the results stated in [10] we can compute the residues at these
pointss = 1,2, ...,d/2. The results are the following, where we omit the cotangent case,
which will be treated in section 4.

Theorem 2.1. Apart from the case$01(¢, 1), SU (g, 1) with ¢ odd andg even, the residue
of ¢r(s; x) ats = m (for m an integer,l < m < d/2) equals

1 d/2—m ) +i_1 )
X OVIT\G)C ) (1) (’" y ) P! aamrj-1) (2.6)
j=0

given the preceding notation. Also fer=1, 2, ...,
d/2-1 (_1)j+1j!pg(j+n+l)a

1
tr(—n: x) = ZX(]-)VOI(F\G)CG[ >

2j
m+Dn+2)---(nt+j+1)

j=0
dj2-1 »n k
—D*n! 5, _ .
+2 Z Z ¢ ,Pg( k)bk+1(])512jj| (2.7)
o = (=Rt
where
of . 2(p+j) —1)B )
by(j) L (222D 1] [ « ] e (2.8)
a(G) 2(p+ Plp =D
forp=1,2,..., B, therth Bernoulli number, and for
def

aG) = |5 if G=S8U(@,D) with ¢ odd
or G=SP,1) anyl, Fa_20

¢r(0; x) = —no(x)+ (the right-hand side of equation (2.7) evaluatediat 0).

7 if G=850:1(,1) with¢even
[ } . (2.9)
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Now we consider the cas€ = S01(¢,1) with ¢ odd. By the results of [9], for
G = S01(2n +1,1) ¢r(s; x) has at most a simple pole at the poists= d/2 — k,
k=0,1,2,.... Moreover, we have the following.

Theorem 2.2.For G = S01(2n + 1, 1) the residue ofr(s; x) ats = d/2 — k (where
d/2=n+%k=0,12,..)equals

1 n _1 JjHn+k 2(j+k_n)r P+ l .
=X (HVOI(T\G)Cg ( ) fo (]1 242 (2.10)
4 = (-ntbITn+3;-k
for k > n, and equals
1 K (=17 o5 T (n — k + j + Yz i
L velr\Gycg S A T i 2420kt (2.11)
4 = JIT(m+ 35—k
for 0 < k < n. Herepg = n. Also¢r(0; x) = —no(x), whereastr(—k; x) = 0 for
k=1212,....
In theorems 2.1 and 2.2 the constalt is given in the appendix.
3. The heat kernel coefficients
The object of interest is the heat keragl(z; x) defined forr > 0 by
[o¢]
or(t; x) = Y nj (e " (3.2)
j=0

If h, is the fundamental solution of the heat equatiom#nthenk, andwr (¢; x) are related
by the Selberg trace formula (cf [9])

or(t; x) = x (HVol(I'\G)h (1) +6r (t; x) (3.2)
where the theta functiofy- (7; x) is given by equation (4.18) of [9] (fdr = 0 there) and where

1 2 2
hi(l) = —ero / e"1C(r)| 2 dr. (3.3)
4 R

We shallnot need the result (3.2). Our goal is to compute explicitly all of the coefficients
A, = A (T, x) in the asymptotic expansion

wr(t; x) ~ (4m)‘d/ZZAkt" as t— 0. (3.4)
k=0

Now ¢r(s; x) andwr (¢; x) are related by the Mellin transform:
o Moer]s) 1
CF(Sv X)_ F(S) - F(S)
Moreover, one knows by abstract generalities (cf [14, 16] for example) that the coefficients
Ay are related to residues and special valuegr@f; x). Namely form an integer with
1<m <d/2,ford even

A, = (47)?2T (m) x [residue ofcr(s; x) ats = m]. (3.6)
Also for a positive integen
_ (_1)11(47.[)(1/2

Ai, =
4y
2T n'

0 d
f or(t; ) tde for Res > > (3.5)
0

sr(—=n; x) (3.7)
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whereas
Ag = (4m)"Pno(x) + ¢ (0; )] (3.8)
ForG = SO1(2n + 1, 1) (the only case in whicll is odd) we have fok =0, 1, 2, . ..
d . d
Ax = (4m)¥?r <§ — k) X [re3|due oftr(s; x) ats = 5~ k} (3.9)

d/2=n+ % Hence by equation (3.6)—(3.9), and theorems 2.1, 2.2 we obtain the following
main result.

Theorem 3.1. The heat kernebr(¢; x) in (3.1) admits an asymptotic expansion (3.4). More
precisely, given any non-negative integéione has

N
lim [(4m)d/2a)p(t; x) — ZAk(F, X)tki|tN =0 (3.10)
t—0* —o
where, apart from the cotangent case in (2.3) (i.e. the €ase SU (g, 1) with g even), the
coefficientsA, (T, x) = Ay (Xr) are given as follows.

For all G exceptG = S01(¢, 1), SU (g, 1) with £ odd andg even

AT, x) = @m)E Ly (YVOI(T\G) Com ;; % [g — e+ 1)}!az[g-<z+m
for nggg—l (3.12)
Ag (T, 1) = (—1)"(4m) 2 X (WVOI(T\G) Com
X |: g(—l)j+1pg(n+1+'i)j!a2j + zgzli(_l)z pg(n_e) b[+1(j)612‘:|
= (n+1+j)! == (n—0)! /
for n=0,1,2,... (3.12)

whereb,(j) (p =1,2,...) anda(G) are given by (2.8) and (2.9).
ForG=S0:2n+1,1),k=0,1,2,...

" (=0T (n = €+ Dz

AT, x) = 7 (@7t x (DVOI(T\G)Cs Y = (3.13)
=0 -

or
mintk,n) «_2yk—t _

AT, ) = 7¥2@r)"E (DVOIT\G)Cs Y (=pg)[20n = Oz (3.14)

— (k=0 (n—D122n=0

using thatl'(m + 1) = 7¥/2(2m)![22"m!] 7.

4. The cotangent case

In theorem 3.1 we computed all the Minakshisundaram—Pleijel coefficignt&-) for all
compact rank-1 space fornd&- (up to local isomorphism) with one exception—namely the
caseXr = I'\G/K with G = SU(q, 1) wheregq is even. Here, as indicated in (2.3), the
Plancherel density involves the cotangent function, in contrast to the other cases. Thus we call
this case the cotangent case, which we now consider to complete our computation.

We assume&s = SU(q, 1) where nowg > 2 is even. The meromorphic structure of
Zr(s; x) in (2.1) in this case differs essentially from the case of gdd its non-singular
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terms—not the singular terms ¢f (s; x) where information on poles is determined. One
therefore has in fact that for an integemwith 1 < m < d/2 the residue ofr(s; x) ats = m

is also given by (2.6), where nawy2 = ¢ = pp. Also formula (2.7) holds provided a different
definition of theb, (/) in (2.8) is employed. Namely the proof of (2.7) 8t/ (¢, 1) with ¢
even shows that its validity remains provided we now deing) by

(_1)j22(p+j>32(p+j)
2(p+ Nip = D]

forp=1,2,...,j=0,1,2,.... At this point the earlier discussions apply and we may
conclude the following.

(4.1)

by(j) =

Theorem 4.1. Formulae (3.11) and (3.12) also hold fa&f = SU (g, 1) with ¢ > 2 even,
whered /2 = q = po, provided that in formula (3.12) definition (2.8) fbg(;) is replaced by
definition (4.1).

5. Conclusions

Using results [9] on the meromorphic structure of the zeta function of a rank-1 locally
symmetric spacé&’, we have obtained in a quick computation all of the Minakshisundaram-—
Pleijel coefficients (in closed form) in the short-time asymptotic expansion of the heat kernel on
X. Our method differs markedly from that of [1-3]. Besides their mathematical interest these
coefficients play an important role in quantum loop effects (such as the conformal anomaly),
and in field theory, quantum gravity, and cosmology [17, 18].
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Appendix

The constanCy in equation (2.3) and the Miatello coefficients; of the polynomialsP (r)
in equation (2.5) appear in the statements of theorems 2.1, 2.2 and34dnd P (r) for the
various rank-1 simple groupgs of this paper are given in table Al.

Table A.1.
G Co P(r)
-1 .
SO1(n, 1), n > 2 [22"*4r (g)z] T2 [rz + %] n=2m
Mo lr?+jn=2m+1

SU®n, 1),n > 2 [22-11 ()?] -t [; + <"—jf>2]

sPainz2  [2r@? T [F ]IS E -+ 3] [7 +(n-i+3) }
2

Fa—20 [2*'r@e?t [2+3][%+3] M [72 +(%2) ]
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