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Abstract. We consider the heat kernel (and the zeta function) associated with Laplace-type
operators acting on a general irreducible rank-1 locally symmetric spaceX. The set of
Minakshisundaram–Pleijel coefficients{Ak(X)}∞k=0 in the short-time asymptotic expansion of the
kernel is calculated explicitly.

1. Introduction

In the theory of quantum fields on curved background spaces, the short-time expansion of
the heat kernel plays an extremely important role. In particular situations, for example, the
coefficients in the expansion control the one-loop divergences of the effective action, and
related quantities such as the stress energy momentum tensor. Some of these coefficients have
been determined and appear in the physics and mathematical literature. Note [1–6] for closed
Riemannian manifolds and [7, 8] for manifolds with a smooth boundary. The literature on
these matters is vast.

In [1–3], R Miatello studies the case of a closed locally symmetric rank-1 manifoldX,
using the representation theory of the group of isometries ofX. We consider the same case in
the present paper, but we use the spectral zeta function ofX. By our approach we determine
the expansion coefficients immediately and explicitly (essentially in one step), given the results
of [9]. Recently the topological Casimir energy [10], the one-loop effective action, and the
multiplicative and conformal anomaly [11, 12] associated with Laplace-type operators onX,
and their product, have also been analysed by use of the spectral zeta function.

The paper is organized as follows. In section 2 we define the spectral zeta functionζ0(s;χ)
ofX corresponding to a finite-dimensional representationχ of the fundamental group0 ofX.
The residues ofζ0(s;χ) and special values of this zeta function, which relate to the expansion
coefficients, are provided by theorems 2.1 and 2.2. In section 3 we consider the asymptotic
expansion of the heat kernel (ast → 0+), and compute all the expansion coefficients in closed
form in the main theorem, theorem 3.1. Section 5 contains some remarks in summary. We
include an appendix with information supplementary to theorems 2.1, 2.2 and 3.1.

§ On leave from Sankt-Petersburg State Technical University.
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2. The spectral zeta function

We shall be working with an irreducible rank-1 symmetric spaceM = G/K of non-compact
type. ThusG will be a connected non-compact simple split rank-1 Lie group with a finite
centre andK ⊂ G will be a maximal compact subgroup [13]. Let0 ⊂ G be a discrete,
co-compact torsion free subgroup. ThenX = X0 = 0\M is a compact Riemannian manifold
with fundamental group0; namelyX is a compact locally symmetric space. Given a finite-
dimensional unitary representationχ of 0 there is the corresponding vector bundleVχ 7→ X

over X given by Vχ = 0\(M ⊗ Fχ), whereFχ (the fibre ofVχ ) is the representation
space ofχ and where0 acts onM ⊗ Fχ by the ruleγ · (m, f ) = (γ · m,χ(γ )f ) for
(γ,m, f ) ∈ (0 ⊗ M ⊗ Fχ). Let 10 be the Laplace–Beltrami operator ofX acting on
smooth sections ofVχ ; we obtain10 by projecting the Laplace–Beltrami operator ofM
(which isG-invariant and thus0-invariant) toX. As X is compact we can consider the
spectrum{λj = λj (χ), nj = nj (χ)}∞j=0 of −10, wherenj is the (finite) multiplicity of the
eigenvalueλj . We use the minus preceding10 to have theλj > 0 : 0= λ0 < λ1 < λ2 . . . ;
limj→∞ λj = ∞.

The spectral zeta functionζ0(s;χ) of X0 of Minakshisundaram–Pleijel type [14], which
we shall consider is defined by

ζ0(s;χ) =
∞∑
j=1

nj (χ)

λj (χ)s
(2.1)

for Res � 0. ζ0(s;χ) is a holomorphic function on the domain Res > d/2, whered is the
dimension ofM, and by general principlesζ0(s;χ) admits a meromorphic continuation to
the full complex planeC. However, since the manifoldX0 is quite special it is desirable to
have the meromorphic continuation ofζ0(s;χ) in an explicit form, for example in terms of the
structure ofG and0. Using the Selberg trace formula and theK-spherical harmonic analysis
of G, we have obtained such a form in [9]; also see [10, 15]. In particular we can obtain the
residues ofζ0(s;χ), and compute the special valuesζ0(−n;χ), n = 0, 1, 2 . . .—results which
play a decisive role in the present work. To state these results we introduce further notation.

Up to local isomorphism we can representM = G/K by the following quotients:

M =


SO1(n, 1)/SO(n) (I )

SU(n, 1)/U(n) (II )

SP (n, 1)/(SP (n)⊗ SP (1)) (III )

F4(−20)/Spin(9) (IV )

 (2.2)

whered = n, 2n, 4n, 16, respectively. We shall need the real numberρ0 which corresponds
to 1

2 the sum of the positive real restricted roots ofG with respect to a nilpotent factor in an
Iwasawa decomposition ofG. ρ0 is given byρ0 = (n − 1)/2, n,2n + 1, 11 respectively in
the cases(I )–(IV ). For details on these matters the reader may consult [13], and also the
Appendix in [10].

The spherical harmonic analysis onM is controlled by Harish–Chandra’s Plancherel
density|C(r)|−2, a function on the real numbersR, computed by Miatello [1–3], and others,
in the rank-1 case we are considering. We choose a normalization of the Haar measure onG,
however, which differs from that of [1–3]; see [9]. For a suitable constantCG depending only
onG, and for a suitable even polynomialP(r) of degreed−2 forG 6= SO1(n, 1)with n odd,
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and of degreed − 1= 2m for G = SO1(2m + 1, 1), |C(r)|−2 is given by

|C(r)|−2 =


CGπrP (r) tanh(πr) for G = SO1(2m, 1)
CGπrP (r) tanh(πr/2) for G = SU(n, 1) n odd

or G = SP (n, 1) F4(−20)

CGπrP (r) coth(πr/2) for G = SU(n, 1) n even
CGπP (r) for G = SO1(2m + 1, 1)

 . (2.3)

The value ofCG and the explicit form ofP(r) are given in the appendix. For real hyperbolic
spaceM = SO1(2m, 1)/SO(2m) of even dimension 2m, for example,P(r) is given by

P(r) =
m−2∏
j=0

[
r2 +

(2j + 1)2

4

]
. (2.4)

The coefficients ofP(r) will be denoted bya2j :

P(r) =
d/2−1∑
j=0

a2j r
2j for G 6= SO1(2m + 1, 1)

=
m∑
j=0

a2j r
2j for G = SO1(2m + 1, 1). (2.5)

We denote by Vol(0\G) theG-invariant volume of0\G induced by the Haar measure onG.
As pointed out earlier, the explicit meromorphic structure of the zeta functionζ0(s;χ) of

(2.1) is worked out in [9] in terms of the spherical harmonic analysis ofG and0-structure;
see theorems 4.2, 5.1 there; also compare theorems 5.2, equation (6.1), and theorem 6.9
of [10]. In particular, apart from the caseG = SO1(n, 1) with n odd (a case which we treat
separately),ζ0(s;χ) is holomorphic except for possibly simple poles ats = 1, 2, . . . , d/2.
By theorem 5.1 of [9], or by the results stated in [10] we can compute the residues at these
pointss = 1, 2, . . . , d/2. The results are the following, where we omit the cotangent case,
which will be treated in section 4.

Theorem 2.1.Apart from the casesSO1(`, 1), SU(q, 1) with ` odd andq even, the residue
of ζ0(s;χ) at s = m (for m an integer,16 m 6 d/2) equals

1

4
χ(1)Vol(0\G)CG

d/2−m∑
j=0

(−1)j
(
m + j − 1

j

)
ρ

2j
0 a2(m+j−1) (2.6)

given the preceding notation. Also forn = 1, 2, . . . ,

ζ0(−n;χ) = 1

4
χ(1)Vol(0\G)CG

[ d/2−1∑
j=0

(−1)j+1j !ρ2(j+n+1)
0 a2j

(n + 1)(n + 2) · · · (n + j + 1)

+2
d/2−1∑
j=0

n∑
k=0

(−1)kn!

(n− k)! ρ
2(n−k)
0 bk+1(j)a2j

]
(2.7)

where

bp(j)
def= [21−2(p+j) − 1]

[
π

a(G)

]2(p+j)
(−1)jB2(p+j)

2(p + j)[(p − 1)!]
(2.8)

for p = 1, 2, . . . , Br therth Bernoulli number, and for

a(G)
def=

[
π if G = SO1(`, 1) with ` even
π
2 if G = SU(q, 1) with q odd

or G = SP (`, 1) any`, F4(−20)

]
. (2.9)

ζ0(0;χ) = −n0(χ)+ (the right-hand side of equation (2.7) evaluated atn = 0).
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Now we consider the caseG = SO1(`, 1) with ` odd. By the results of [9], for
G = SO1(2n + 1, 1) ζ0(s;χ) has at most a simple pole at the pointss = d/2 − k,
k = 0, 1, 2, . . . . Moreover, we have the following.

Theorem 2.2.For G = SO1(2n + 1, 1) the residue ofζ0(s;χ) at s = d/2 − k (where
d/2= n + 1

2 , k = 0, 1, 2, . . .) equals

1

4
χ(1)Vol(0\G)CG

n∑
j=0

(−1)j+n+kρ
2(j+k−n)
0 0(j + 1

2)a2j

(j − n + k)!0(n + 1
2 − k)

(2.10)

for k > n, and equals

1

4
χ(1)Vol(0\G)CG

k∑
j=0

(−1)jρ2j
0 0(n− k + j + 1

2)a2(n−k+j)
j !0(n + 1

2 − k)
(2.11)

for 0 6 k < n. Here ρ0 = n. Also ζ0(0;χ) = −n0(χ), whereasζ0(−k;χ) = 0 for
k = 1, 2, . . . .

In theorems 2.1 and 2.2 the constantCG is given in the appendix.

3. The heat kernel coefficients

The object of interest is the heat kernelω0(t;χ) defined fort > 0 by

ω0(t;χ) =
∞∑
j=0

nj (χ)e
−λj (χ)t . (3.1)

If ht is the fundamental solution of the heat equation onM, thenht andω0(t;χ) are related
by the Selberg trace formula (cf [9])

ω0(t;χ) = χ(1)Vol(0\G)ht(1) + θ0(t;χ) (3.2)

where the theta functionθ0(t;χ) is given by equation (4.18) of [9] (forb = 0 there) and where

ht (1) = 1

4π
e−ρ

2
0 t

∫
R

e−r
2t |C(r)|−2 dr. (3.3)

We shallnot need the result (3.2). Our goal is to compute explicitly all of the coefficients
Ak = Ak(0, χ) in the asymptotic expansion

ω0(t;χ) ' (4πt)−d/2
∞∑
k=0

Akt
k as t → 0+. (3.4)

Now ζ0(s;χ) andω0(t;χ) are related by the Mellin transform:

ζ0(s;χ) = M[ω0](s)

0(s)
= 1

0(s)

∫ ∞
0
ω0(t;χ)ts−1 dt for Res >

d

2
. (3.5)

Moreover, one knows by abstract generalities (cf [14, 16] for example) that the coefficients
Ak are related to residues and special values ofζ0(s;χ). Namely form an integer with
16 m 6 d/2, for d even

Ad
2−m = (4π)

d/20(m)× [residue ofζ0(s;χ) at s = m]. (3.6)

Also for a positive integern

Ad
2 +n =

(−1)n(4π)d/2

n!
ζ0(−n;χ) (3.7)
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whereas

Ad
2
= (4π)d/2[n0(χ) + ζ0(0;χ)]. (3.8)

ForG = SO1(2n + 1, 1) (the only case in whichd is odd) we have fork = 0, 1, 2, . . .

Ak = (4π)d/20
(
d

2
− k

)
×
[
residue ofζ0(s;χ) at s = d

2
− k

]
(3.9)

d/2 = n + 1
2. Hence by equation (3.6)–(3.9), and theorems 2.1, 2.2 we obtain the following

main result.

Theorem 3.1.The heat kernelω0(t;χ) in (3.1) admits an asymptotic expansion (3.4). More
precisely, given any non-negative integerN one has

lim
t→0+

[
(4πt)d/2ω0(t;χ)−

N∑
k=0

Ak(0, χ)t
k

]
t−N = 0 (3.10)

where, apart from the cotangent case in (2.3) (i.e. the caseG = SU(q, 1) with q even), the
coefficientsAk(0, χ) = Ak(X0) are given as follows.

For all G exceptG = SO1(`, 1), SU(q, 1) with ` odd andq even

Ak(0, χ) = (4π) d2−1χ(1)Vol(0\G)CGπ
k∑
`=0

(−ρ2
0)
k−`

(k − `)!
[
d

2
− (` + 1)

]
!a2[ d2−(`+1)]

for 06 k 6 d

2
− 1 (3.11)

Ad
2 +n(0, χ) = (−1)n(4π)

d
2−1χ(1)Vol(0\G)CGπ

×
[ d

2−1∑
j=0

(−1)j+1ρ
2(n+1+j)
0 j !a2j

(n + 1 +j)!
+ 2

d
2−1∑
j=0

n∑
`=0

(−1)`
ρ

2(n−`)
0

(n− `)! b`+1(j)a2j

]
for n = 0, 1, 2, . . . (3.12)

wherebp(j) (p = 1, 2, . . .) anda(G) are given by (2.8) and (2.9).
For G = SO1(2n + 1, 1), k = 0, 1, 2, . . .

Ak(0, χ) = π(4π)n− 1
2χ(1)Vol(0\G)CG

min(k,n)∑
`=0

(−n2)k−`0(n− ` + 1
2)a2(n−`)

(k − `)! (3.13)

or

Ak(0, χ) = π3/2(4π)n−
1
2χ(1)Vol(0\G)CG

min(k,n)∑
`=0

(−ρ2
0)
k−`[2(n− `)]!a2(n−`)

(k − `)!(n− l)!22(n−`) (3.14)

using that0(m + 1
2) = π1/2(2m)![22mm!]−1.

4. The cotangent case

In theorem 3.1 we computed all the Minakshisundaram–Pleijel coefficientsAk(X0) for all
compact rank-1 space formsX0 (up to local isomorphism) with one exception—namely the
caseX0 = 0\G/K with G = SU(q, 1) whereq is even. Here, as indicated in (2.3), the
Plancherel density involves the cotangent function, in contrast to the other cases. Thus we call
this case the cotangent case, which we now consider to complete our computation.

We assumeG = SU(q, 1) where nowq > 2 is even. The meromorphic structure of
ζ0(s;χ) in (2.1) in this case differs essentially from the case of oddq in its non-singular
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terms—not the singular terms ofζ0(s;χ) where information on poles is determined. One
therefore has in fact that for an integerm with 16 m 6 d/2 the residue ofζ0(s;χ) at s = m
is also given by (2.6), where nowd/2= q = ρ0. Also formula (2.7) holds provided a different
definition of thebp(j) in (2.8) is employed. Namely the proof of (2.7) forSU(q, 1) with q
even shows that its validity remains provided we now definebp(j) by

bp(j) = (−1)j22(p+j)B2(p+j)

2(p + j)[(p − 1)!]
(4.1)

for p = 1, 2, . . . , j = 0, 1, 2, . . . . At this point the earlier discussions apply and we may
conclude the following.

Theorem 4.1.Formulae (3.11) and (3.12) also hold forG = SU(q, 1) with q > 2 even,
whered/2= q = ρ0, provided that in formula (3.12) definition (2.8) forbp(j) is replaced by
definition (4.1).

5. Conclusions

Using results [9] on the meromorphic structure of the zeta function of a rank-1 locally
symmetric spaceX, we have obtained in a quick computation all of the Minakshisundaram–
Pleijel coefficients (in closed form) in the short-time asymptotic expansion of the heat kernel on
X. Our method differs markedly from that of [1–3]. Besides their mathematical interest these
coefficients play an important role in quantum loop effects (such as the conformal anomaly),
and in field theory, quantum gravity, and cosmology [17,18].
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Appendix

The constantCG in equation (2.3) and the Miatello coefficientsa2j of the polynomialsP(r)
in equation (2.5) appear in the statements of theorems 2.1, 2.2 and 3.1.CG andP(r) for the
various rank-1 simple groupsG of this paper are given in table A1.

Table A.1.

G CG P(r)

SO1(n, 1), n > 2
[
22n−40

(
n
2

)2]−1 ∏m−2
j=0

[
r2 + (2j+1)2

4

]
, n = 2m∏m−1

j=0 [r2 + j2], n = 2m + 1

SU(n, 1), n > 2 [22n−10(n)2]−1 ∏n−1
j=1

[
r2

4 + (n−2j)2

4

]
SP (n, 1), n > 2

[
24n+10(2n)2

]−1
[
r2

4 + 1
4

]∏n+1
j=3

[
r2

4 +
(
n− j + 3

2

)2] [ r2

4 +
(
n− j + 5

2

)2]
F4(−20) [2210(8)2]−1

[
r2

4 + 1
4

] [
r2

4 + 9
4

]∏4
j=0

[
r2

4 +
(

2j+1
2

)2]
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